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Circular strings on product manifolds 

..-__.I__. A T.Tirren 
Fysisk Instilut, Odense Univenity, Odense. Denmark 

Received 29 May 1991 

Abstract Classical circular string configurations of the Davidson-Wali type, which exist on 
the product manifold of Minkowski space and a general 'internal'space, are investigated. 
The dynamics in intcrnal space is found lo be governed by a potential of characteristic 
cattraction + repulsion' fom. A fw examples are presented including the system 
H =  ~(i~+y2+*2yz+(I/*zy2)). 

1. Introduction 

A very interesting non-collapsing classical string configuration was found by Davidson 
and Wali in 11, 21. They considered a circular string living on the manifolds M4 @ SI 
and M4 @ S, respectively, and found that the interplay between Minkowski space 
and the internal spaces led to a type of self-intcraction with the string, preventing it 
from collapsing in real space. This interplay between Minkowski space and internal 
space was, in the case of M 4 @  SI, obtained by introducing a winding number, letting 
the string wind around the internal space SI, but it was somewhat surprising that a 
similar construction was possible in the case of M ,  @ S,, since no topological reason 
would prevent the string from shrinking to a point on S,. 

The solution by Davidson and Wali has been generalized to the case where the 
internal space is a sphere of arbitrary dimension [3, 41, and in the present article we 
consider a generalization to a much broader class of manifolds. In section 2 we define 
this class of manifolds and we derive the corresponding equations of motion for the 
string. It turns out that they are in fact of the same general form as in the original 
M, @ S, case 121. In section 3 we have a few comments on the general results, and 
some simple examples are briefly examined. 
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We consider a Nambu-Goto string which exists on a manifold which is the product 
of Minkowski space Ms and an n-dimensional space, which we call X,. Minkowski 
space is parametrized using cylinder coordinates in 3-space, so that the line elcment 
is 

dsk, = -d12 + d z 2  + d r 2  + rZdOZ. 

ds?, D = 9.. 'I dz'  d z J  

(1) 

The n-dimensional space S, is parametrized by coordinates ( zl, z2, .  . . , z") so that 
. .  

(2) 
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where 

(3) 1 9 . .  = g . . ( z  ,z’ ( . . . ,  z”) :J ‘1 

and i , j  = 1 , 2 , .  . . ,n. 
We now make a few assumptions about the space X,. First we assume that we 

can find a coordinate system where the metric is globally independent of some of the 
coordinates: 

zi E ( z ” , z P )  9 . .  %I = g . . ( z ” )  ‘J (4) 

w h e r e u =  1 ,2  ,..., k < n a n d p = ( k + l ) , ( k + Z )  ,..., n. Furthermorewe 
assume that the metric can be written in a airect product form: 

The assumptions (4) and (5) are a restriction which, however, seems to cover a lot 
of interesting spaces including spheres, ellipsoids, hyperbolloids, parabolloids, cones 
and tori of various dimensions. 

The Nambu-Goto string is defined by the Lagrangian 

where G is the induced metric on the worldsheet 

and where g M N  is the metric from (1) and (2) (M, N taking 4 + n values), Fa 
are the usual string coordinates ( T ,  a )  and z M  arc coordinates in M4 @ X,, i.e. 
z M  = ( t , z ,  T , @ ,  P , z ” ) .  We make the following ansatz for the (.,a) dependence 
of the coordinates: 

r = r ( T )  z = O  Q = o  t = ~  zn = A ” ( r )  z ” =  B ” ( r ) + n ” a  
(8) 

where (nli+’,  nk+’,  . . . , n ” )  are S, winding numbers ( n e  E Z), so we should think 
of za  as ‘radial’ coordinates and z P  as ‘angular’ coordinates in the internal space. 
From (7) and (8) it follows that 

G - i.’ - 1 + g n p A a A  ’ ‘ 4  + g P , B  U E” 

G,, = G,, = gP,nuBP. 

00 - 
P V  GI, = r’ + gP,n  n 

(9) 

Using (6) and (9) we can now derive the equations of motion. The t ,  0 equations 
lead to 

G,,/C = l/w 
r’G,, JC = L 

GOO/C = w ( ( L ’ J r 4 )  - 1) 
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where l / w  and L are the constant energy density and angular momentum density of 
the string respectively. Using (10) the r equation is 

which can be integrated to 

and finally solved by 

p2(T) = i c ?  + 4.; - ~ 2 c o s ( 2 w r  +constant). (13) 
The equations of motion associated with the cyclic coordinates x’ lead to n - IC 
constant charge densities R p  (also using (10)): 

i.e. 

B’ = w (n. + F) 
where 

R’ = R”(A”) = g’”R,. (16) 
Supposing A” is known we then obtain B” simply by integration of (15). It follows 
that the ‘interesting’ field equations are the equations associated with A”, which we 
now consider. Using (IO) and (15) we find 

Introducing the Christoffcl symbols: 

we can rewrite (17) as 

It is now important to realize that (19) are precisely the Hamilton equations which 
can be determined from the effective Hamiltonian: 

where c i /2  is the constant value of the ‘energy’. The equations of motion have now 
bccn separated into three families (12), (15) and (20), which are of the same general 
form as in the original M4 @ S, case [2]. Finally when confronting these equations 
with the t,0 equations (IO), we get the consistency conditions among the various 
constants of integration: 

cf + c’, = 1 /U2 (21) 

L = npClp. (22) 
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3. Comments and examples 

It is seen from (13) that the dynamia of the string in Minkowski space only depends 
on the internal space X, through the consistency conditions among the constants of 
integration (21) and (22), and it is actually the winding numbers and charges from X ,  
that prevent the string from collapsing in Minkowski space. It is clear lrom (12) that a 
non-zero angular momentum L will ensure a strictly positive string radius. According 
to (22) we then just have to choose the charges Q,, and the winding numbers n” such 
that the combination n’R, is non-zero to get a non-collapsing string. An interesting 
feature is that our ansatz configuration (8) winding around the internal space S, 
seems to be meaningful in many cases, even when the fundamental group of X ,  is 
trivial and where no topological reasons prevcnt the string from shrinking to a point. 
This was first pointed out in [2] for the case X, = S2 and later observed for a 
sphere of arbitrary dimension [3, 41. The origin of this phenomenon seems to be the 
general form of the potential in (ZO), which in terms of the constant charges Q,, can 
be written as 

V ( A e )  = f g v v n P n “  + fg’”R,Q,. (23) 

Since g,,,gYp = 6; it follows that an eventual attractive component, trying to shrink 
the string, in the g , , , n ~ n ”  term is always accompanied by a repulsive component in 
the g’“Q,,Q, term and vice versa. This can be illustrated by the following simple 
example. 

Figure 1. The sclf-inleracling string winding around the cone is kepl away lrom the 
singular p i n t  z = 0. 

We take S, to be a two-dimensional cone dcfined by (figure 1) 

2 + y2 = 2 , 2 2 0  (24) 

which can be parametrized by 

s = z c o s f p  ‘p E [0,27r] 

y = z s i n v  z E [ O , m ] .  (25)  
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The line element is 

ds2 = 2dz2 + zz d q 2  

and the metric has the desired form (4),(5) with (z" ,z") = ( z ,  q). Using ansatz (8) 
with z as the A-coordinate and q as the B-coordinate we find the Hamiltonian (20) 
determining the time dependence of the z-coordinate: 

(27) 

where w has been absorbed in T. It is now clear from (27) that, because of the charge 
C2, the string is always kept away from the singular point z = 0 and is therefore not 
allowed to shrink to a point. This is also manifest in the exact solution: 

H = i ( 2 i 2  + z 2 n 2  + C2'!z2) I i c i  

z 2 ( r )  = S 2n' + L , G c o s ( J ; i n T  n V 4nL +constant!. (28) 

To demonstrate the use of formula (20) properly we should consider a more 
complicated internal manifold than a two-dimensional cone. n k e  for instance a 
four-dimensional torus S, @ S, defined by 

(dz2 + y2 + 22 + 212 - a)Z + w2 = 1 (29) 

where a is the constant radius of S,(a > 1). The torus can be parametrized in the 
following way: 

z = ( a + c o s $ ) p c o s q l  

z = ( a  + cos $)J1-;;"cos q2 

21 = ( a  + cos +)-sin q2 

y =  ( a + c o s $ ) p s i n q o l  

w = sin $ 

and it follows that the metric has the desired form (4) and (5) with 2'' = ( p , $ ) ,  
zp = (q?, q2). For the ansatz (8) we can now without further calculations write down 
the Hamiltonian (20) for p ( r ) , + ( ~ ) ,  which through (19). (15) and (13) completely 
determines the dynamics of the  string on M4 @ S, @ S,: (for simplicity we take 
(n')2 = (r~')~ E n2)  

1 -  ( a + c o s $ ) ' -  
2 

- _  4 - 2 '  
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c. *I I w-channel 

z-channel - 
1. 2 .  3 .  4 .  s't 

I 

2 

Figure 2. The potential conlour ol (35) 

This is a twodimensional integrable Hamiltonian. The second integral is given by 

and the coordinates can be separated by elimination of P2 in (32): 

(34) c2 2 - - dJ ' 2  + nZ( a + cos $)2  + c 2 / (  a + cos 1L)2 

where 2 is the constant value of I , .  
The final example we will consider here is based upon the fact that the kinetic 

energy of (20) only involves gmp,  whereas the potential energy only involvcs g,,. 
This means that we can to some extent circumvent the whole situation: instead 
of determining the Hamiltonian (20) for a given manifold X,, we can choose a 
Hamiltonian and then try to fix gmP and g,", to bring the kinetic and potential 
energ: respectively, in the form of (20). We use this procedure to construct a simple 
metric leading to chaotic motion. 7b be more specific we consider the following 
two-dimensional Hamiltonian: 

(35) N = ?(Z 1 - 2  + y 2  + x 2 y 2  + 1 /xZyZ) 

which is of the form (20) if we make the identifications 

and where the charge and winding number for simplicity have been taken equal to 
unity. The potential of (35) is illustrated in figure 2. A priori it could be expected 
that the trajectory wouid simpiy escape aiong one of the 'channcis', since tile energy 
obviously does not prevent that. However, numerical investigations show that this 
does not happen (figure 3), instead one finds that the trajectory somehow 'oscillates' 
between the two channels. This phenomenon can be very easily understood by the 
principle of adiabatic invariance, as we show in the appendix. 
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L I 

0.0 - 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

X 

Figure 3. The trajectory of (35) 

We now turn to the numerical investigations of the system defined by (35). We 
rotate the (I, y) axes by 45'; then the Hamiltonian is 

fr( t .q74,7i)  = :ti'+ 7i2) + ;(t2 - v ~ ) ~ +  2/(t2 - v ~ ) ~  
where E (z-y)/."b q (.+;:)/;& csing !h$ p.r.metrkz!iQ. we cQ.sider 

( = O  i > O .  (38) 

(37) 

the surface of section defined by 

The numerical integrations are performed using the fourth-order Runge-Kutta tech- 
nique; they are somewhat difficult to carry out since the trajectoty spends most of the 
time in the channels. The minimum energy of the Hamiltonian (37) is E = 1, and 
we have studied the surface of section (38) for a large number of initial conditions in 
the energy range E E [1;2]. The general macroscopic picture of these investigations 
is the following: For small energies close to E = 1 the points seem to lie exactly on 
a curve (figure 4(a)),  thus indicating regular motion. However, when the energy is 
raised, these curves become more and more smeared out (figures 4(b) and 4(c)), and 
when the energy approaches E = 2 the surface of sections are dominated by large 
irregular regions (figure 4(d)),  and it is impossible to draw a curve through the points. 
This is very similar to the results obtained for othcr non-scale invariant Hamiltonians, 
for instance the Henon-Heiles system [SI and some systems with quartic potentials 
[7], and it strongly indicates that no second integral of motion exists for the system 
( 3 9 ,  i.e. it is non-integrable. It should be stressed here that in the three examples 
given eariier, we have oniy considered the motion governed by the Hamiitonian (20) 
in internal space. In all three cases there is also an equation (12) for the string radius 
in Minkowski space and equations (15) for the angular coordinates in internal space. 
The examples have shown that we can obtain both regular and irregular motion in 
internal space, but from the fourdimensional point of view the string is 'breathing' 



5188 A L Larsen 

?*A= 4, n, :emcc of scc!ios (38) For vnria.'r cncrglcr of !he H"i!!O!?iPT! sys!erE 
(37). (a). (b), (c) and (d)  represent lhe surface at Section at E = 1.09, E = 1.28, 
E = 1.44 and E = 1.85 respectively. 

completely regularly in all cases since, as pointcd out at the beginning of this section, 
it only seems to feel the constant charges and winding numbers from internal space, 
which exist independently of the nature of the internal motion. 

In conclusion we have studied a circular string which exists on the. product man- 
ifold of Minkowski space M ,  and a general internal space X,, thus generalizing 
the results of [1-4]. We found that the motion in internal space was governed 
by a potentiai oi characteristic 'attraction + repuision' form. A simpic exampie 
V(+ ,y )  = $(z2y2 + l / r 2 y 2 )  was examined numerically, giving strong indications 
for irregular motion, although it should be noted that our numerical studies have been 
somewhat cursory; a more systematic investigation concerning regular and irregular 
regions is, however, beyond the scope of this article. 
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Appendix 

in trim appenovr we show that the trajectory of the iiamiitonian system (55) is aiways 
forced to go back somewhere in the channels of the potential (figure Z), even though 
the energy does not prevent it from escaping to infinity. Suppose for instance that 
the trajectory is somewhere in the r-channel. The motion in the y-direction is then 
governed by the Hamiltonian: 

T ~ .  ~~~~ 

(At)  1 . 2  H,(Y,Y) = Z(Y + 2 2 Y 2 +  IlZZYZ). 

y2(r) = 7 [ m s i n ( 2 z r  2 + constant) + E,] 

If we consider 2 as a parameter we can solve this Hamiltonian by 
1 

where E, is the value of H,, so in the Hamiltonian represents a (non-linear) oscillator 
of frequency 22. Still keeping 2 fixed we can calculate the constant action variable 
J ,  corresponding to y: 

1 J = -  f y d y  
y - 2lr 

2Ey - x2y2 - l / z 2 y 2 d y  
= - j J  1 

2 x  
= - \ - y  ( P  - 1) , I - - '  13- (.U) 

According to the adiabatic invariance theorem [6, 71 (see also [8, 91 for applications) 
the action (A3) stays constant under small variations of the frequency 2x, and that 
is exactly the kind of situation we are in far out in the z-channel, where the relative 
change in z is small over a period of y. In this approximation we then get from (Al) 
and (A3): 

H E ; : ~ ~ ? + ~ E J ~ + ~ .  (A4) 
It follows that j. = 0 when 

2 = (E-  1 ) / 2 J Y  

where E is the constant value of thc total energy. When x reaches this value, the 
trajectoly is forced to return to the central region. 
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